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A b s h e t  We present a Monte Carlo study of a classical lattice-gas Hamiltonian formerly 
introduced by Paninello and Tosatti in order to describe the coexistence of atomic and 
molecular phases. The nature of the ordering transition undergone by the dew molecular 
fluid into a molecular-crystal phase is investigated in two dimensions through phenomeno- 
logical finite-sizescaling techniques. 

1. Introduction 

Implementing a statistical-mechanical theory of the phase diagram of chemically react- 
ing species poses rather severe problems which pertain, on one hand, to an adequate 
treatment of the molecular bond and, on the other, to a proper account of the role 
played by temperature and density on the outbreak of macroscopic coexistence of 
atomic and molecular phases. However, in order to acquire some feeling on the interplay 
between energy and entropy effects in this process, it is useful to investigate simple 
models suitably endowed with some of the key features that may be responsible for the 
above phenomenonology. 

The lattice-gas Hamiltonian that is the objea of the present study was in fact 
proposed by Paninello and Tosatti (PT) to simulate the saturation of a diatomic bond 
through classical monatomic interactions 111. For arbitrary space dimension the FT 
Hamiltonian reads [ 2 ] :  

where (i, j )  run over all pairs of nearest-neighbour sites in the lattice, k(i)  labels the 
first neighbours of site i that are different from j ,  and, similarly, [U) labels the first 
neighbours of site j different from i. The site-occupancy variable c, takes on the value 
zero or one for an empty or filled site, respectively, and thus determines the fluctuating 
number of occupied sites N for a given value of the chemical potential p. The projectors 
that appear in the FT Hamiltonian on both sides of the king-type term c,cj allow the 
formation of a bond between two neighbouring particles if and only if all of the residual 
nearest-neighbour sites are vacant. This constraint implies interactions that are clearly 
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non-local and irreducibly many-body. The binding energy resulting from the formation 
of a dimer is -J, with J>O. 

From now on, we shall deal with the properties displayed by the PT Hamiltonian 
on a two-dimensional square lattice. In this geometry the generic interaction term in 
(1) involves up to eight sites simultaneously. At zero temperature, according to the 
value of the chemical potential, the model switches between three distinct ground states. 

For p < - &J, the lattice is empty. 
In the range - & < p  <;J the minimum-energy coniiguration is that of a ‘molecular 

crystal’ (MC) made up by staggered rows of parallel dimers (see figure 1 of [3]). The 
resulting ground state, which can also be. described as a close-packed structure formed 
by the hexagonal tiles corresponding to the exclusion shells of each dimer, is half-filled 
and eight-fold degenerate. In fact, the equilibrium MC state is a ‘mixture’ of translation- 
invariant ‘pure states’, four of which are transformed one into another by rigidly shifting 
dimers along the crystal polarization axis. The residual four states are equivalent to the 
former four ones but for the orientation of the PT dimcrs which, on a square lattice, 
may point along two orthogonal directions. 

For p >iJ,  the ground state is a closest-packed atomic state in which particles fill 
up the whole lattice. 

The marked difference between the lattice coverages realized in the molecular and 
atomic states is the result of the steric hindrance effect associated with the formation 
of an (elongated) chemical bond. Indeed, such effects turn out to be crucial in driving 
the dissociative molecular-to-atomic transition in real systems under high pressure. 

For T>O, the formerly empty region becomes populated with particles that are 
mostly bonded and give rise to a fluid phase whose range of stability extends, with 
increasirig temperatures, further and further beyond the ground-state threshold, p = $ 
J.  Correspondingly, the MC region shrinks (also on the high-density atomic ‘side’), 
eventually collapsing onto one single end-point whose thermodynamic coordinates are 
TMc=0.3J/ke (where ke is B0k”nn’S csnstant) and pMc=0.27J, respectively [2]. 
For T> TMC, the sharp thermodynamic distinction between the disordered molecular 
and atomic phases fades out. Finer analysis reveals the persistence in the ‘supercritical’ 
fluid region of a diffie dissociative transition that is signalled by the anomalous behav- 
iour of the constant volume derivative of the pressure with respect to temperature [3]. 
This last quantity has been discussed in relation to the experimental evidence of 
a continuous dissociative transition in fluid nitrogen shock-compressed at high 
temperatures [4-61. 

In this paper we present the first systematic finite-size-scaling analysis of the Monte 
Carlo (A”) results obtained for the molecular freezing transition in the PT framework. 
The layout of the paper is as follows: In section 2 we discuss some methodological 
aspects concerned with the simulation algorithm which was implemented with the 
multiple-histogram technique of Ferrenberg and Swendsen [7,8] in order to obtain, 
through one set of data collected for a given thermodynamic state, probability distribu- 
tions at nearby values of temperature and chemical potential. The numerical results are 
presented in section 3 together with a finite-size-scaling analysis of the data. Section 4 
is finally devoted to concluding remarks. 

2. Simulation method 

We performed standard A# simulations on square lattices with linear size L=4n 
( n 4 8 ) ,  under periodic boundary conditions (p.b.c.). The PT Hamiltonian was sampled 
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along two isotherms corresponding to inverse temperatures p= 3.5 and 4.0, respectively, 
where B = p J  (correspondingly, p = p / J ) .  An u4t%' move consisted of an attempt at 
removing an existing particle or at inserting a new one in an empty lattice site. The 
algorithm used was such that the molecular axis of dimers forming at equilibrium might 
indifferently align along any of the two allowed directions. 

Following Ferrenberg and Swendsen [7], along each run we accumulated the 
histogram ./('&,(N, Nb), i.e. the number of configurations produced for each value 
of the number of particles N and number of bonds N b = - E / J  (where E is the 
energy) in the thermodynamic state characterized by the parameters p and p.  

Figure 1. Three-dimensional plot of the histogram &"](N, Nb) for a 32x32 lattice at 
p=3.5 andp=0.156. 

Histograms were updated after a sweep over the lattice. Figure 1 shows a three- 
dimensional plot of such a histogram for a state corresponding to a molecular 
liquid close to the freezing point. The two-peak surface stretches along a straight 
line N = 2 N b + a ( L 2 - 4 N b ) .  the excess of N with respect to 2Nb corresponding to 
monomers or particles bunched in clusters. The value of the positive quantity a 
depends on the state parameters /3 and p .  Liquid-like configurations give rise to 
the front hill whose maximum in figure I happens to lie at a point with coordinates 
Nb/L2.r0.18 and N,'Lzir0.41. The shape of this hill is systematically more rounded 
than that of the ridge resulting from ordered 'crystal' states which, instead, looks 
thinner and rather elongated. 

The evolution of the reduced histogram obtained after resumming JV&(N, Nb) 
over N is piesented in figure 2 :  the change in the relative weights of the two maxima 
monitors the transition from the molecular-liquid to the molecular-crystal state. 

Equilibrium averages were computed as 
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F w e  2. Reduced histograms of states &N;B,,(Nb)-[&3,p)]-' &&&,(N. Nb) for a 
32X 32 lattice at p=3.5 plotted for a number of values of the chemical potential referring 
to states on both sides of the transition point. 

where 

In our m s ,  the value of this quantity ranged between 4 x IO5 and 4 x 10' A'%? config- 
urations per site. 

In order to perform a finite-size-scaling analysis of the A'%? data across the transition 
with sutficient reliability and confidence, one needs to resolve with great precision the 
shape of the maxima (i.e. their height, half-width, and position) which typically show 
up in the thermodynamic response functions. To this aim, we resorted to the multiple- 
histogram technique as implemented by Ferrenberg and Swendsen [SI. The data 
obtained through the equilibrium sampling performed on a grid of points along each 
isotherm were combined so as to obtain an optimized estimate for the density of states 
in the form of a continuous function. 

The quantities evaluated during each run were the average number of bonds per 
site @b=&/L2 and the total fractional coverage @-m/L* together with the 2 x 2 matrix 
of the second-order correlation moments $,=AX,AX,, where A X i = X f - k j  is the 
fluctuation of the extensive property Xi (energy, number of particles) about its average 
value. We recall that the thermodynamic-fluctuation theory leads to the following 
relations [ 9 ] :  
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where the ‘volume’ is tacitly kept k e d  in each derivative. Obviously, the two off- 
diagonal elements are equal and consistently verify the appropriate Maxwell relation. 

3. Results 

3.1. Monte Carlo data 

We start by showing how typical averages computed through ( 2 )  on a discrete mesh 
of points compare with the corresponding estimates obtained over a continuous range 

ll.3 
I 

016 I 1 I 
0.1 0.15 0.2 

PJJ 

. -  -1 0.8 ...._.......I 

PJJ 
Figure 3. Average bond fraction Ob and corresponding secondader correlation moment 
9,, for a 3 2 x  32 lattice at /?=3.5: solid circles, .A%? data; dashed lines, single-histogram 
estimate based on the AY? data for p =0.16 only; continuous lines, results of the multiple- 
histogram method implemented with the data relative to 16 states in the range 
0.14Qi 40.168. 

of values via both the single- and multiple-histogram techniques. Figure 3 shows the 
average number of bonds (energy) per site and the first diagonal term of the fluctuation 
matrix. This quantity may be related to the ordinary specific heat C that is computed 
after keeping both the volume and the average number of particles constant. In fact, 
upon reducing the derivative that appears in (3a) to the form where the extensive 
variable R is kept fixed instead of the conjugate intensity Pp, we find 

(4) 
1 - (C/kS)  =SI, - 9 1 2 .  ST;. $21. 

P’ 
As is clearly seen from figure 3, the estimate obtained by extending the information 

contained in one single histogram (which, in figure 3(b), is the one produced for a 



5260 G Fimara 

value of the chemical potential corresponding to the position of the maximum) already 
provides a fair, overall agreement with the A% data. However, the multiple-histogram 
implementation of the Ferrenberg-Swendsen technique does visibly improve upon the 
single-histogram result, ultimately furnishing a smooth and accurate interpolation of 
the data points. This feature is indeed preserved (with a comparable level of accuracy) 
for all of the sizes that we have explored. 

and of the three second- 
order correlation moments Sii is shown in figures 4 and 5, respectively, for p= 3.5. It 

The size dependence of the average quantities 0 and 

2 

I 
0 0. I 0 1 

!JJ 

Figwe 4. Size dependence of the fractional coverage E) and average bond fraction Ob plotted 
as a function of the chemical potential for b=3.5. 

is apparent that, as L increases, the variation of the bond and number density profiles 
as a function of the chemical potential becomes more and more abrupt. We also note 
that, upon enlarging the size of the lattice, spurious coherence effects associated with 
p.b.c.-which, to some extent, concur in anticipating the formation of the long-range- 
ordered phase-are progressively depressed. Correspondingly, the location of the maxi- 
mum in the thermodynamic response functions shifts to greater values of the chemical 
potential, which indicates that a closer packing of dimers is needed in order to drive 
the transition towards the crystalline phase. 

3.2. Finite-size scaling 

The conventional route followed for determining the character of a phase transition 
blowing up in a finite system is to study how the thermodynamic response functions 
scale with the size of the lattice. In fact, it is well known that any jump or singularity 
associated with a sharp change of state occurring in the thermodynamic limit is smeared 
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Figure 5. Size dependence of the three second-order correlation moments plotted as a 
function of the chemical potential for a53.5. 

out in a finite system: as a result, one observes a rounding and, possibly, also a shifting 
of the transition over some region of the equilibrium parameters. It is through an 
analysis of such asymptotic finite-size effects that one may ultimately ascertain the 
continuous or discontinuous nature of the transition. 

The theory of finite-size scaling at critical points is firmly settled [lo, 111, while a 
corresponding framework for dealing with first-order transitions has been formulated 
only rather recently [12]. The scaling of both symmetric and asymmetric first-order 
phase transitions is now fairly well understood [13-191. We recall that first-order transi- 
tions driven by an internal thermodynamic field (such as the temperature or, as in the 
present case, also the chemical potential) are normally asymmetric. A phenomenological 
mean-field-type approach for dealing with such transitions in a finite system was first 
pursued by Challa and co-workers who described the co-existing phases by Gaussian 
distributions with the same height [161. Later studies, based on a more rigorous 
statistical-mechanical basis [17-191, proved that this assumption was incorrect and 



5262 G Fiwnara 
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0.5 
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Figure 6. Position (a), height (b), and half-width (c) of the thermodynamic response 
functions as a function of the lattice size for 8=3.5: circles, squares, and triangles refer to 
J,,  , flIr, and S,, respectively. The continuous lines represent linear-regression fib of the 
data. As is seen from (c), the half-widths approach their asymptotic scaling behaviour more 
slowly than the other two indicators. The corresponding remession lines were in fact traced 
using the data for L320. 

showed that it is not the heights but the volumes underneath the peaks that become 
equal at the transition [17]. Notwithstanding the wrong assumption made by Challa 
and co-workers, the corrected theory-which has been successfully tested against the 
.A& data for the ten-state Potts model in two dimensions [20,21]-still confirmed one 
central conclusion reached in 1161 on the general scaling behaviour that should be 
expected on a &dimensional lattice with p.b.c. at a point of multiple-phase co-existence: 
i.e. a rounding and shifting of leading order L-d.  By contrast, at a second-order transi- 
tion such effects are controlled by a diverging correlation length and do typically scale 
as L-'", where v is the correlation-length critical exponent. 

In order to identify the nature of the molecular freezing transition exhibited by the 
PT model, we now investigate how the position, height and half-width of the peaks 
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4.05 
16 

Figure 7. Position (a), height (b), and half-width (c) of the thermodynamic response 
functions as a function of the lattice size forp=4.0. The meaning of the lines and symbols 
is the same as in figure 6. 

exhibited by the second-order fluctuation moments change as a function of the lattice 
sue along two distinct isotherms (p=3 .5 ,  4.0) which extend across the transition line. 
The finite-size-scaling analysis was carried out on the analytical ‘representations’ of the 
4% data synthetically provided by the multiple-histogram technique discussed above. 

The results of this analysis are presented in figures 6 and 7. These plots clearly show 
that all the chosen indicators scale as L-’ (or its reciprocal), the expected marka- 
apart from lower-order corrections-of a first-order phase transition in two dimensions. 
The ‘quality’ of the asymptotic linear behaviour shown by each of the above indicators 
was also tested through a three-parameter fit of the form pLU+ r :  the results did indeed 
confirm a direct or reciprocal dependence upon L-’. 

As a byproduct of the analysis, we obtain the ‘infinite-size’ estimate of the chemical 
potential at the transition point p” (in units of J )  as a function of the temperature. 
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0.0012 

N 
h 

3 

0 

Figure 8. Second-order correlation moments 4,(8, p ;  L) divided by L' plotted as a func- 
tion of { = W - ~ > ( P ) ] ~ ' f o r , J = 3 . 5 .  

For 0=3.5 %re find p',=0.167-0.168, while for 0 = 4  the transition point shifts to 
pf, = 0.053. 

The finite-size-scaling theory also implies that at a first-order phase transition the 
reduced specific heat C'L-' is a scaling function of ( T -  T',)L2, where T', is the bulk 
critical temperature [16,20]. A test of this statement for the correlation moments 
S,(p, p :  L )  is presented in figure 8. The shifts of the peak positions p y ( p ;  L )  in the 
finite system show up in figure 8 as a displacement of the maxima from the origin to 
the values [ p y ( p ;  L )  -p',(p)]Lz, 

In order to estimate the coverage and energy jumps at the transition we have also 
studied the size-dependence of the points of maximum curvature in the particle and 
bond-density profiles. From equations (36) and (3c) it follows that these points do also 
correspond to the pair of inflection points that bracket the maximum in 912 and 422 
plotted at constant temperature as a function of p. As shown in figure 9, the values of 
0 and Ob at such two points scale linearly as a function of L-'. We find that a linear 
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0 .151  , ] 
0 0.002 0.004 

L2 
Figure 9. Points of maximum curvature in the particle and bonddensity profiles plotted as 
a function of L-’: circles (a) and squares (b) refer to 0 and Ob, respectively, for p=3.5 
(open symbols) and p=4.0 (solid symbols). The continuous lines represent linear-regression 
fits of the data. 

Table 1. Estimated jumps of the bond and number coverage at inverse temperatures $= 
3.5 and 4.0. The resulting discontinuity in the entropy per site s (in units of k ~ )  is also 
reported. 

d A@, AQ As 
3.5 0.0313 0.0335 -0.1291 
4.0 0.02M) 0.0402 -0,1126 
3.5 0.0313 0.0335 -0.1291 
4.0 0.02M) 0.0402 -0,1126 

regression of the data yields direrent values for the asymptotic densities that correspond 
to the points of maximum curvature in both the coverage and bond fraction profiles 
at each temperature. In table 1 we report the extrapolated jumps together with the 
resulting discontinuity in the entropy of the lattice. 
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4. Conclnsions 

In this paper we have discussed the results of a finite-size-scaling analysis carried out 
for a rather complex lattice-gas Hamiltonian which was devised in order to mimic the 
saturation of a molecular bond by means of classical, non-local interactions [I-31. 
The model was sampled on a two-dimensional square lattice through extensive Monte 
Carlo simulations implemented with the multiple-histogram technique proposed by 
Ferrenberg and Swendsen [7, XI. 

For small values of the chemical potential, the phase diagram implies the existence 
of a fluid of diatomic molecules in equilibrium with a dilute gas of monatomic particles. 
Below a ‘critical’ temperature T ~ c = 0 . 3 J / k ~ ,  upon increasing the value of the chemical 
potential, this fluid freezes into an ordered phase. The present JH simulations carried 
out for ditrerent lattice sizes and analysed through finite-size-scaling techniques provide 
convincing evidence that the molecular freezing transition, as decribed by the Parrinello 
and Tosatti Hamiltonian, is thoroughly fist  order. 
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